
Text to Speech in New Languages without a Standardized Orthography 

Sunayana Sitaram, Gopala Krishna Anumanchipalli, Justin Chiu,  

Alok Parlikar and Alan W Black 

Language Technologies Institute, Carnegie Mellon University 

{ssitaram, gopalakr, jchiu1, aup, awb}@cs.cmu.edu 
 

Abstract 

Many spoken languages do not have a standardized writing 

system.  Building text to speech voices for them, without 

accurate transcripts of speech data is difficult.  Our language 

independent method to bootstrap synthetic voices using only 

speech data relies upon cross-lingual phonetic decoding of 

speech.  In this paper, we describe novel additions to our 

bootstrapping method.  We present results on eight different 

languages---English, Dari, Pashto, Iraqi, Thai, Konkani, 

Inupiaq and Ojibwe, from different language families and 

show that our phonetic voices can be made understandable 

with as little as an hour of speech data that never had 

transcriptions, and without many resources in the target 

language available.  We also present purely acoustic 

techniques that can help induce syllable and word level 

information that can further improve the intelligibility of these 

voices.  

Index Terms: speech synthesis, synthesis without text, 

languages without an orthography 

1. Introduction 

Recent developments in speech and language technologies 

have revolutionized the ways in which we access information. 

 Advances in speech recognition, speech synthesis and dialog 

modeling have brought out interactive agents that people can 

talk to naturally and ask for information.  There is a lot of 

interest in building such systems especially in multilingual 

environments. Building speech and language systems typically 

requires significant amounts of data and linguistic resources. 

For many spoken languages of the world, finding large 

corpora or linguistic resources is difficult.  Yet, these 

languages have many native speakers around the world and it 

would be very interesting to deploy speech technologies in 

them. 

Our work is about building text-to-speech systems 

for languages that are purely spoken languages: they do not 

have a standardized writing system.  These languages could be 

mainstream languages such as Konkani (a western Indian 

language with over 8 million speakers), or dialects of a major 

language that are phonetically quite distinct from the closest 

major language.  Building a TTS system usually requires 

training data consisting of a speech corpus with corresponding 

transcripts.  However, for these languages that aren't written 

down in a standard manner, one can only find speech corpora. 

 Our current efforts focus on building speech synthesis 

systems when our training data doesn't contain text. 

It may seem futile to build a TTS system when the 

language at hand doesn't have a text form.  Indeed, if there is 

no text at training time, there won't be text at test time, and 

then one might wonder why we need a TTS system at all. 

 However, consider the use case of deploying a speech-to-

speech translation of video lectures from English into 

Konkani.  We have to synthesize speech in this “un-written” 

language from the output of a machine translation system. 

 Even if the language at hand may not have a text form, we 

need some intermediate representation that can act as a text 

form that the machine translation system can produce.  A first 

approximation of such a form is phonetic strings.  Another use 

case for which we need TTS without text is, say, deploying a 

bus information system in Konkani.  Our dialog system could 

have information about when the next bus is, but it has to 

generate speech to deliver this information.  Again, one can 

imagine using a phonetic form to represent the speech to be 

generated, and produce a string of phones from the natural 

language generation model in the bus information dialog 

system. 

The work we present here is our continued effort in 

improving text to speech for languages that do not have a 

standardized orthography.  We have built voices for several 

languages, from purely speech corpora, and produced 

understandable synthesis.  We use cross-lingual phonetic 

speech recognition methods to do so.  Phone strings are not 

ideal for TTS, however, as a lot of information is contained in 

higher level phonological units including the syllables and 

words that can help produce natural prosody.  However, 

detecting words from speech corpus alone is a difficult task. 

 We have explored how purely acoustic techniques can be used 

to detect word like units in our training speech corpus and use 

this to further improve the intelligibility of speech synthesis. 

2. Relation to prior work 

Speech to speech translation typically involves a cascade of 

three models: an automatic speech recognition system (ASR) 

in the source language, a statistical machine translation system 

(SMT), and a text to speech engine (TTS) in the target 

language. Generally, these three models are developed 

independently of each other. Recent work such as [1, 2, 3, 4] 

has looked into deeper integration of this pipeline, but the 

general assumption here is that the target language has an 

orthography. 

If the target language of speech to speech translation 

does not have a written form, it has been proposed that one be 

defined, though training people to use it consistently is in itself 

very hard and prone to inconsistencies (e.g. Iraqi Arabic 

transcription techniques in the recent TRANSTAC Speech to 

Speech Translation Project, see [5]). Our proposal is to use a 

phonetic-like representation of the target speech, derived 

acoustically as the orthography to use. [5, 6] have investigated 

such an approach. 

Changes have been proposed to SMT modeling 

methods [7, 8] to specifically deal with phoneme strings in the 

target language. In order to induce the automatic phonetic 

writing form, we use an ASR system in a foreign language and 
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adapt the acoustic model to match the target speech corpus. 

Speech synthesis voices are typically built from less data 

compared to speech recognition systems. Acoustic model 

adaptation with limited resources can be challenging [9]. [10] 

has recently proposed a rapid acoustic model adaptation 

technique using cross-lingual bootstrapping that showed 

improvements in the ASR of under-resourced languages. Our 

model adaptation technique is somewhat similar to that 

method, but we optimize the adaptation towards better speech 

synthesis, and have only acoustic data in the target language. 

In preliminary work in this direction [11] we 

proposed a method to devise a writing system. We also 

proposed using existing techniques to automatically induce 

words and syllables from a string of phonemes [12]. In this 

work, we propose using acoustic information to derive higher 

level phonological units, which is language independent and 

more reliable than inducing structures using noisy ASR 

output.  

Although such representations may be difficult for a 

native speaker to write, an SMT system can help bridge the 

gap from a source language to the target phonetic 

representation of the language. [13] models pronunciation 

variability based on articulatory features and is more suited 

for our purpose (since ASR transcript could be noisy) and we 

plan to use such models in the future.  

3. Data and resources 

We used audio from eight languages from four diverse 

language families for this research. Our audio data ranged 

from almost two hours of speech to less than six minutes, as 

shown in Table 1. 

Language Size 

(minutes) 

English 111 

Dari 52 

Iraqi 62 

Pashto 39 

Thai 25 

Ojibwe 12 

Inupiaq 5.5 

Konkani 5.5 

Table 1: Audio data sizes 

 

Our English data was from the Blizzard Challenge 

[14] 2013 audio book task, recorded by a professional voice 

recording artist.  

Dari is a dialect of Persian that is used in 

Afghanistan as an official language and also spoken in parts of 

Iran and Tajikistan. It has over 18 million native speakers. 

Pashto is a also an official language of Afghanistan and has 

over 40 million speakers. The Dari and Pashto corpora are 

from the DARPA TRANSTAC project. Iraqi Arabic is a dialect 

of Arabic spoken in Iraq and has about 15 million speakers. 

The Iraqi Arabic corpora were provided by BBN as part of the 

DARPA BOLT project. 

The Thai language is spoken by over 20 million 

people and is the official language of Thailand. We used the 

Thai speech corpora from the SPICE [15] dataset. 

Inupiaq is an Inuit language spoken by about 2100 

people in northern and northwestern Alaska. Ojibwe is spoken 

in Canada and the United States and has around 56000 native 

speakers. Both Inupiaq and Ojibwe use the Latin script in their 

written forms. Our data for Inupiaq and Ojibwe came from  a 

corpus collected as part of the Endangered Languages project 

at Carnegie Mellon University. 

Konkani is an official language of India and is used 

primarily in Goa and Karnataka. It has over 8 million native 

speakers. Konkani does not have its own script, and native 

Konkani speakers use Devanagari, Latin, Kannada, 

Malayalam and even Arabic scripts to write it. We used a 

corpus of Konkani from the CMU SPICE project [15]. 

We used the CMU Sphinx [16] speech recognition 

toolkit in allphone mode as our phonetic decoder and to train 

new acoustic models. We used the Festvox voice building 

tools to build CLUSTERGEN [17] voices for the Festival [18] 

speech synthesizer. CLUSTERGEN is a type of statistical 

parametric synthesizer that is more robust to noise than other 

methods such as unit selection. Our method can be used with 

any parametric synthesis technique. 

 Our phonetic decoder used trigram phonetic 

language models built from German and Marathi data. For the 

German language model, we used the Europarl [19] corpus 

and for the Marathi language model, we used a corpus created 

by collecting news stories from a Marathi news website, 

Esakal. The words are expanded to their phonetic forms using 

statistically trained letter to sound rules in the respective 

language. We used a single acoustic model, the Wall Street 

Journal (WSJ) English acoustic model provided with CMU 

Sphinx. 

We used the TestVox[20] tool to run listening tests 

online. 

4. Overview of our approach 

Figure 1 shows a block diagram of the components and flow 

of our approach.  

 
Figure 1: Overview of our approach 
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First, we decode the audio in the target language with a 

phonetic decoder using an acoustic model and language model 

from another language. Then, using the transcripts obtained 

from decoding and the speech corpus, we iteratively build new 

targeted acoustic models until convergence. We use the 

phonetic transcripts to build synthetic voices and evaluate 

them objectively using the Mel-Cepstral  Distance (MCD) 

[21] and subjectively using human listening tasks. We also 

automatically induce syllable and word-like structures on 

these transcripts and build syllable and word based synthetic 

voices. The next few sections describe these steps in greater 

detail. 

5. Bootstrapping synthetic voices 

For phonetic decoding, we use an acoustic model and 

phoneme language model from a related language. For our 

experiments in this paper, we used the English WSJ acoustic 

model for decoding all languages. Using the WSJ acoustic 

model for decoding English speech is not fair, but we used it 

to keep the acoustic model consistent in all our experiments. 

Ideally for phonetic decoding, an acoustic model and phoneme 

language model from a closely related language are more 

appropriate. To simulate this in our experiments, we used 

Marathi and German phonetic language models, as listed in 

Table 2.  

 

Language Acoustic Model Language Model 

English WSJ German 

Dari WSJ Marathi 

Iraqi WSJ German 

Pashto WSJ Marathi 

Thai WSJ Marathi 

Ojibwe WSJ German 

Inupiaq WSJ German 

Konkani WSJ Marathi 

Table 2: Acoustic and Language models used for cross lingual 

decoding 

 

After decoding speech in the target language using 

the appropriate acoustic and language models, we iteratively 

train new acoustic models using the decoded transcript as the 

text and the original audio as the speech. At each stage of the 

iterative process, we calculate the MCD of the voice built 

using the decoded transcript from that iteration. Figure 3, 4 

and 5 show the MCD of voices built using these transcripts for 

various languages.  

Figure 2 shows the MCDs of transcripts obtained on 

English, Dari and Iraqi Arabic. English has about two hours of 

speech while Dari and Iraqi Arabic have about one hour of 

speech. We see that there is a big drop in MCD value from the 

first iteration to the second, in which the targeted acoustic 

model is built. In the case of English, iteration 7 has the lowest 

MCD, after which it rises slightly. For Iraqi Arabic and Dari, 

the MCD continues to fall until the last iteration. 

 

 
Figure 2: Iterative targeted Acoustic Models for languages 

with ~1 hour of speech 

 

 Figure 3 shows the MCD graph for Pashto and Thai, 

both of which have around 30 minutes of speech. We see that 

the MCD for Pashto in the first three iterations falls rapidly 

and then does not change much, while for Thai, there is a big 

drop after the first iteration, which is consistent with the 

results for English, Dari and Iraqi Arabic. There is a large rise 

in MCD at iteration 7 for Thai, but it falls again in the next 

iteration. We can see that even with half an hour of speech, our 

iterative method produces better transcripts than the base 

decoding with the WSJ acoustic model. 

 

 
Figure 3: Iterative targeted Acoustic Models for languages 

with ~30 minutes of speech 

 

 Figure 4 shows results for Ojibwe, which has 12 

minutes of speech and Inupiaq and Konkani, both of which 

have around five minutes of speech. We see that for Ojibwe, 

the MCD rises slightly after the first iteration and then falls 

after the fifth iteration, with the difference in the MCD 

between the base and best iteration being 1.43. This shows that 

even with just 12 minutes of speech, the iterative method is 

able to come up with a better transcript than just the base 

decoding. However, for both Inupiaq and Konkani, we see that 

the MCD rises after the first iteration. This is probably 

because of the phonetic complexity of these languages and the 

amount of speech is too small to build even targeted acoustic 

models. 
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Figure 4: Iterative targeted Acoustic Models for languages 

with < 15 minutes of speech 

 

 Overall, we see that with a reasonable amount of 

speech data, the iterative targeted acoustic models produce 

better phoneme transcripts than just using base decoding from 

a cross lingual phonetic decoder, shown here on a variety of 

languages. 

 Throughout the iterations, we kept the language 

model used by the ASR consistent. One obvious extension of 

this approach is to adapt the language model at each iteration. 

However, preliminary experiments on interpolating the 

original language model at each iteration with the new 

transcript did not yield improvements in MCD.  

6. Improved synthesis with syllables 

and words 

So far, we have discussed the bootstrapping method 

which produces phoneme transcripts of the audio, which may 

be noisy. However, Text to Speech systems typically benefit 

from using syllable and word level information. So, we try to 

automatically induce syllables and word-like units from the 

phoneme transcripts. 

We syllabified English and Dari transcripts with the 

lowest MCD in the 10 iterations. To obtain syllables, we use 

heuristic rules built into the Festival speech synthesizer to join 

phonemes in the transcripts. We treated the syllables as words 

and added appropriate entries in the lexicon. 

For inducing word-like units, we used cross-lingual 

information to train a Conditional Random Field (CRF) 

model. We created training data for the CRF by extracting 

phonemes and word boundaries from the German Europarl 

data. We used CRF++ [22] to train a German model that could 

group phoneme sequences into world-like units and used the 

same English and Dari transcripts used for syllabification 

earlier to test the model. We discarded words that were rare (< 

300 in frequency) and used the rest of the hypothesized words 

in our transcripts. We added appropriate lexical entries for 

these words and built voices for English and Dari. 

Table 3 shows the result of syllable and word 

induction. We see that both for English and Dari, grouping 

phonemes into syllables decreases the MCD of the new voice. 

Surprisingly, this difference is very large in the case of Dari, 

even though the syllable rules were written for English. The 

voice built for English using CRF word induction has a 

slightly lower MCD than the syllable method. However, this 

method does not seem to make much of a difference in the 

case of Dari. This could be because we used a German word 

model, and German word rules are quite different from Dari.  

 

Language Best 

iteration 

Syllables CRF 

English 5.328 5.26 5.25 

Dari 4.787 4.165 4.76  

Table 3: MCD comparison of voices with syllable and word 

induction 

7. Inducing higher level phonological 

units 

In Section 6, we have demonstrated how syllables and words 

can be induced from the raw phonetic transcriptions. Here we 

present an approach that uses the acoustic information, to 

derive higher order phonological units. While the approach for 

deriving syllables from phone strings is fairly straight forward 

across languages (grouping phones together, with the 

constraint of having one vowel per syllable), the derivation of 

words from phones is not one-to-one and there is little 

generalization that is language independent. There is 

additional complexities for languages with no formal notions 

of word, or those that are morphologically agglutinative. Here 

we propose derivation of a more reliable and generalizable 

phonological unit, the accent group. 

We use the broad definition of accent group as being 

a group of syllables that bears only one intonational accent 

(a.k.a pitch accent) on them. This definition, while appealing 

to the idea of metrical feet, does not use pre-defined rules on 

which syllables should be grouped together, instead opting for 

a completely data-driven parsing approach (the complete 

description and training strategy are provided in [24]) as 

summarized below. 

The idea is to analyze the pitch contour in tandem 

with the underlying syllable sequence and approximate it with 

a synthetic contour described as a sequence of TILT shapes 

[23] over parses of syllable groups. The optimal parse on the 

syllables is one that minimizes the reconstruction error of the 

target pitch contour. A stochastic context free grammar is 

trained on such parses of accent groups, so as to allow 

prediction of accent groups for unseen sequences of syllables. 

In order to uniquely identify syllables, we tag each syllable 

with the vowel name, the onset and coda categories as 

described in [24] (e.g: syl_onsettype_codatype_vowel). These 

categories are only a few in number and yet are language 

independent, allowing us to use this approach for arbitrary 

new languages here. This is illustrated in Figure 5 below.  

 

Figure 5: Acoustically derived parse over syllables into accent 

groups 

Given such parses derived acoustically from the pitch contours 

on all of training data, a grammar is trained to  predict parses 

of unseen sequences of tagged syllables. This is further 

improved with decision trees about the positional information 

of each syllable, so as to reliably estimate for each syllable 

boundary, if there is a accent group boundary, or not.  
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8. Subjective evaluation for intelligibility 

From our objective results mentioned earlier, we saw that the 

voices built using syllables were better than the voice built on 

the best iteration using phonemes. Word induction seemed to 

help in the case of English, but not Dari.  

To test this subjectively, we conducted A/B listening 

tests comparing the voice having the lowest MCD and the 

voice with syllable units for both English and Dari to see if 

grouping phonemes together into syllables was perceptually 

better. Table 5 lists the results from tests on English and Dari. 

In both cases, we see that participants preferred the voice with 

syllabified transcripts significantly more than the best 

iteration.  

 

Language # participants Best 

iteration 

Syllable Can’t 

say 

English 7 4% 68% 28% 

Dari 5 6% 72% 22% 

Table 5: Results of listening tests for English and Dari 

 

In order to test the higher level phonological units 

i.e. the words and Accent Groups, we built synthetic voices as 

described in the previous sections. Unseen sequences of 

sentences in syllabified English were synthesized by each of 

the above methods i) Syllable transcripts, ii) CRF induced 

words and iii) Automatically detected Accent Groups. In 

addition, we also compared the system with Accent Groups to 

the best iteration from our baseline approach which has no 

induction of higher level units. 10 sentences of each system 

were compared in pairs by 10 English listeners who were 

asked to make a preference to one of the two stimuli. The 

results are shown in the Table 6.  

 

Voice A Voice B Prefer A Prefer B Can’t say 

Best 

iteration 

Accent 

Group 

12% 78% 10% 

Induced 

words 

(CRF) 

Accent 

Group 

22% 70% 8% 

Syllable Accent 

Group 

47% 43% 10% 

Table 6: Results of listening tests for English  

The results indicate that significant gains can be 

obtained by induction of the speech-derived accent group 

units, as opposed to word derivations through CRFs over 

phoneme transcriptions. While it is encouraging that the 

Accent Group voices perform comparably, syllable voices 

remain the most reliable units that can be induced in the 

current setting. This is perhaps due to the unavailability of 

sufficient data, or features that effectively capture the 

contextual information in building voices using higher levels 

of phonology. 

9. Conclusion and future work 

In this paper, we applied our iterative cross-lingual decoding 

technique to eight languages from various language families. 

We saw that with as little as half an hour of speech, we could 

get improvements in MCD over the baseline decoded 

transcripts.  

 We also used heuristics to syllabify the phoneme 

transcripts and a CRF to automatically induce word like units, 

which led to higher quality voices, both objectively and 

subjectively. In addition, we described a method to use 

acoustic information to identify accent groups to create higher 

level phonological units which may help improve the quality 

of synthesis. Our results indicate that inducing such units leads 

to a large improvement in both MCD and subjective 

preference. 

From our initial experiments on building SMT 

systems from the source language to the target learned 

transcript, knowing where the word boundaries are can prove 

to be critical for good translation. We plan to explore other 

methods to automatically derive higher level units from text 

and acoustics. 

In the future, we also plan to explore using 

combinations of multiple acoustic and language models 

instead of relying on a single model for the initial decoding 

pass. We also realize the importance of the initial phoneset and 

plan to explore more principled methods of pruning phonesets 

at each iteration. The next stage of this work is to extend it to 

use machine translation to provide a usable writing system for 

languages without a standardized orthography. 
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