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Abstract
Phrase break prediction models in speech synthesis are clas-

sifiers that predict whether or not each word boundary is a
prosodic break. These classifiers are generally trained to op-
timize the likelihood of prediction, and their performance is
evaluated in terms of classification accuracy. We propose a mini-
mum error rate training method for phrase break prediction. We
combine multiple phrasing models into a log-linear framework
and optimize the system directly to the quality of break predic-
tion, as measured by the F-measure. We show that this method
significantly improves our phrasing models. We also show how
this framework allows us to design a knob that can be tweaked
to increase or decrease the number of phrase breaks at synthesis
time.
Index Terms: Speech Synthesis, Phrasing

1. Introduction
Phrase break prediction (phrasing) is an important prosodic step
during speech synthesis. Other prosody models depend on phras-
ing decisions, and hence appropriate phrase breaks are critical to
overall naturalness of synthetic speech. The problem of phrasing
can be thought of as a classification problem: given some text,
we want to classify each word boundary as being a phrase break
or not. In terms of the TOBI[1] systems for prosody annota-
tion, phrasing classifiers are typically trained to predict levels
1, 3, and 4. Phrasing classifiers are often trained using standard
corpora: e.g., the Festival[2] system uses a model[3] trained on
the MARSEC[4] data for English voices. If manually annotated
data is not available, phrasing models can be trained by force-
aligning the speech and text data available for building synthetic
voices[5].

In practice, phrasing models can be decomposed into two
disparate models: (i) A model that takes local context of a word
boundary into account to decide how likely a break is, and (ii) A
model that takes longer context of previously generated breaks
to decide how frequently breaks should be generated. These
two models can be combined together, such as using the Viterbi
method, to decide the optimal sequence of phrase breaks.

This paper discusses two important aspects of phrasing, and
attempts to build upon the state of the art: (i) Optimization target
for phrasing, and (ii) Phrasing and changes in speaking rate.

Phrasing classifiers are typically trained to maximize the
likelihood of break prediction. However, they are then evaluated
on the basis of an accuracy measure, such as F-1 score[6]. An
objective improvement in F-1 score is also perceived by people
in subjective listening tests. In order to make a higher perceptual
impact, we aim to optimize our phrasing model directly to the
F-1 score.

Phrasing models are usually insensitive to the speaking rate.
In natural speech, we observe that fast speech has fewer phrase
breaks, and slower speech tends to have more breaks. A phrasing

model needs to thus provide a mechanism that allows us to insert
more or fewer breaks at synthesis time depending on the speaking
rate.

We propose a minimum error rate training approach that
provides a solution to both these needs in phrasing. The idea here
is to combine multiple phrasing models in a log-linear fashion,
and learn weights for different models in order to maximize
the F-measure of break prediction. We describe how such a
framework not only improves the break prediction, but also
offers a “knob” to increase or decrease the number of predicted
breaks. We also discuss how this framework can be useful in
solving other difficult problems, such as phrasing in the context
of the synthesis of disfluent machine translation output.

2. Classic Phrasing (Baseline)
Given a text corpus annotated with breaks, there are several
ways of training a phrasing model. Rule based methods[7], or
data driven methods using machine learning techniques such
as decision trees[8, 9], transformational rule learning[10], z-
score models[11], hidden Markov models[3, 12, 13], memory
based learning[14], Baysian networks[15], maximum entropy
models[16], and neural networks[17] have been successful at the
task. In this work, we use the models[3, 5] that have been setup
for the Festival speech synthesis system[2].

Festival’s phrasing uses two models: a context model, and a
sequence model. If bi is the probability of a break at the juncture
i,Ci is the context of features at juncture i, andBi represents the
context of previous break sequences at juncture i, then we want
to estimate P (bi|Ci, Bi). With the help of the Bayes theorem,
and a few independence assumptions, we can derive that

P (bi|Ci, Bi) ∝ P (bi|Bi) · P (bi|Ci)

P (bi)
.

The term P (bi|Bi) is essentially the language model prob-
ability of a given break sequence. We estimate this in Festival
using a 7-gram model[3]. The term P (bi) is the unigram prob-
ability of a word boundary being a break. Our context model,
P (bi|Ci), is a grammar based model[5]. This is estimated using
a decision tree classifier, that uses word level features, positional
features, and syntactic features. Given these models, at synthesis
time, our goal is to find the optimal break sequence b∗:

b∗ = argmax
b

∏

i

P (bi|Ci, Bi)

∴ b∗ = argmax
b

∏

i

P (bi|Ci) · P (bi|Bi)

.
In order to find the most likely break sequence, Festival runs

a Viterbi search over the possible phrase break sequences. This
is schematically shown in Figure 1.
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Figure 1: Viterbi Phrasing Strategy in Festival

3. Minimum Error Rate Training
Ideally we want to train our phrasing model such that the end-
to-end performance in perceived synthesis quality is optimal.
A model trained to maximize the likelihood of phrase breaks
makes the simplifying assumption that the final evaluation is
based on simply counting the number of wrong decisions made.
However, a metric such as F-measure is a little more complex,
since it takes both precision and recall into account, and is better
correlated to perception than just the accuracy of phrasing. Our
goal is to optimize the selection of phrase breaks in order to
minimize the error our model makes, as measured by the F-1
score. The idea of using minimum error-rate training (MERT)
in phrasing is inspired from its use in the Statistical Machine
Translation[18].

Let us assume that we are given a text sequence t, and
we want to produce a break sequence b. Among all possible
break sequences, we will choose the sequence with the highest
probability:

b∗ = argmax
b

P (b|t).

We directly model the posterior probability P (b|t) using a log-
linear model. In this framework, we have a set of M feature
functions, hm(b, t). For each feature function, we have a weight
wm. The direct phrasing probability is then given by:

P (b|t) =
exp

(∑M
m=1 wmhm(b, t)

)

∑
b′ exp

(∑M
m=1 wmhm(b′, t)

) .

The modeling problem here is to define suitable feature
functions that capture the relevant properties of the phrasing
task. The training problem is to find out suitable weights wM

1 .
However, as mentioned before, we want to train the model to
minimize error.

We define a held out development corpus DN
1 , of size N ,

with text sequences TN
1 that has reference break annotationsRN

1 .
Our goal is to obtain minimum error on this corpus, and a set
of k different candidate break sequences, Sn = bn,1, . . . ,bn,k.
That is, for each of the N sentences in the test set, we have k
hypotheses of break sequences, and we want to pick the ones
that minimize overall error on the test set. Given a set of weights
wM

1 , the top-best break sequence bn for sentence n is given by:

bn = argmax
b∈Sn

[
M∑

m=1

wmhm(b|Tn)

]
.

For each sentence in the development corpus DN
1 , we can pick

the best break sequence given some weights, and then com-

pute the F-measure over these break sequences. The error func-
tion E can then be set to negative value of the F-measure. If
E(DN

1 ;wM
1 ) represents the error on the test set given a set of

weights, we have:

wM
1 ∗ = argmin

wM
1

[
E(DN

1 ;wM
1 )
]
.

The optimization criterion here is tricky. Because of the
presence of an argmax operation within the Error function, we
can not compute the gradient of the error, and hence an optimiza-
tion method such as gradient descent can not be used here. The
error surface is not smooth, and has many local minima.

We use the Basin-Hopping algorithm[19] to optimize the
error function at hand. This global minimization method has
been shown to be extremely efficient for a wide variety of prob-
lems, and is especially useful when the error function has many
minima separated by large barriers. In particular, we use the im-
plementation of this algorithm within the Python SciPy toolkit.

We use a development corpus, use a randomly initialized
weight sequence and produce an n-best list of break sequences.
We then run the minimum error rate training over these n-best
sequences and learn new weights. We then use the new weights
and re-generate an n-best list of break sequences over the devel-
opment corpus, and run minimum error rate training again. We
repeat these iterative process until the final error does not im-
prove across an iteration. After each iteration, we also normalize
the weight vector to be of a unit norm.

We use four feature functions hm(b|t) in our method. Two
of these are the same as the models in the baseline phrasing
method: (i) The context model P (bi|Ci) that looks at the lexical
and syntactic context, and (ii) P (bi|Bi) that looks at the lan-
guage model probability of the break sequence. In addition, we
use another context model, P (bi|Ci), defined in [3] that looks
at the part-of-speech tag context at a word boundary and uses
a quadgram Language Model to predict the probability of the
word boundary being a break. Finally, we use a break-count
feature, that counts the total number of breaks in the predicted
break sequence.

4. Experimental Results
We evaluated our method on two synthetic voices trained using
the CLUSTERGEN[20] statistical parametric synthesis method:
(i) Voice built from about an hour of speech in the F2B corpus
within the Boston University Radio News Corpus[21], and (ii)
Voice built from two hours of recordings of Jane Austen’s books,
for Blizzard Challenge 2013 task EH2. We split the corpora into
splits of 80-10-10 for training, development and testing.

Our baseline phrasing models were built to be style-specific
phrasing models[5] in each case. We trained the proposed model
with minimum error rate method on a held out corpus, and used
the unseen test partition in the same domain to compare the
baseline method to the proposed approach. Table 1 shows the
comparison of the models in terms of the F-1 metric[6]. We
see that the proposed method yields an improvement over the
baseline on both datasets.

5. Phrasing Rate: “Knob”
One requirement of a phrasing model is that it should be flexible
to adapt to the speaking rate of a synthesizer. A slow synthesizer
should probably mark more word boundaries as breaks, and a
faster synthesizer can do away with a few breaks. If the user of a
speech synthesis engine demands that 30%, or 60% of the word
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Table 1: Objective Evaluation (F-1 measure) of the Proposed
MERT Method. Improvements are significant at p < 0.05

Voice Baseline Proposed
F2B 54.35 58.06
Audiobook 52.87 57.58

boundaries should be breaks, then our phrasing model should be
able to meet this requirement. However, this is a tricky constraint.
If our training data had splits corresponding to slower and faster
speaking styles, we could train individual classifiers and use
the appropriate one at synthesis time. But such data is seldom
available, and collecting data to train such specific models is
difficult. We describe how we use the log-linear framework and
MERT mechanism to provide a knob, a continuous number, to
vary the number of phrase breaks produced.

One of the features that we used in the log-linear model was
simply the number of phrase breaks in a given break sequence.
This feature allows us to define a knob to change the number of
phrase breaks our model produces.

Intuitively, the break-count feature tries to make sure that the
number of breaks produced by our model is reasonably close to
the number of breaks in the reference sequences in our develop-
ment data. Even if we optimize towards the F-measure of break
prediction, which itself balances precision and recall of phrasing,
having this additional feature means that the weight learned for
this feature will produce an optimal number of phrase breaks.
If we keep the weights for other features to be the same, and
change the weight of the break-count feature, then the search
process at synthesis time picks utterances with more or fewer
breaks than the optimal. For example, if we subtract a number
from the weight of the break count feature, and maximize the
log-linear combination, we would produce more breaks. We
can vary the value of this weight and measure the number of
word boundaries in a development corpus that were breaks. The
weight of the break-count feature is thus the knob we can use
to tweak the amount of phrasing. Figure 2 shows this curve for
the two voices we have. The x-axis shows the value of the knob
(i.e., the weight of the break-count feature) and the y-axis shows
what percentage of word boundaries in a corpus were predicted
as being breaks.
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Figure 2: Proportion of phrase breaks generated by varying the
log-linear weight of the break-count feature (the knob)

In order to customize the phrasing rate at demand, we need
to parameterize the “knob”, so that given a particular value of
expected proportion of breaks, we can set an appropriate weight
for the break-count feature during synthesis. This problem boils
down to deriving an equation for the inverse of the function
represented in Figure 2. Given a particular phrasing proportion
x, we want to find out the value k that our knob should be set to.

To learn the parametric equation of the knob, we use a
development corpus and varying values of the weight of the
break-count feature to generate data points depicted in Figure 2.
We then fit the data automatically to a variety of sigmoidal,
trignometric and simple functions and choose the function that
best fits the data we have, as measured by the root-mean-squared
error of the fit. We used open-source fitting code, pyeq2[22] in
this work.

Our empirical analysis shows that for various corpora and
phrasing model combinations, the phrasing knob curve can be
approximated, well within a RMS tolerance of about 0.15, using
a Tangent equation with offset:

k = A · tan
(
π
x− C
W

)
+O

where A (Amplitude), C (center), W (width) and O (offset) are
the parameters we learn automatically. For the F2B voice, we
obtained

kf2b = −0.165 · tan
(
π
x− 0.5073

1.0772

)
− 0.4670

and for the Audiobook voice, we obtained

kaudiobook = −0.2682 · tan
(
π
x− 0.5048

1.072

)
− 0.8084

By tweaking the knob to change the phrasing rate, we deviate
from the reference break sequences that we originally used to
train our MERT model. This means, by changing the knob, we
obtain fewer or more breaks, but at the cost of the F-measure.
Of course, since the goal was to insert more or fewer breaks, the
penalty in F-measure is not very relevant anymore, but we looked
at what the drop in the F-measure looks like. Figure 3 shows
how the F-measure changes when we set the expected break
proportion to different values. We observe that the F-measure
is highest when the knob is set to its original value, as learned
from the MERT training.

6. Conclusions and Future Work
We described our method of defining the phrasing problem un-
der a log-linear framework and training the framework with a
minimum error rate target, rather than maximum likelihood. We
showed that combining features/models related to phrasing us-
ing this MERT strategy produces a significant improvement in
phrasing accuracy, as measured by the F-1 metric.

We described a break-count feature integral to our MERT
model that allows us to define a parametric “knob” to vary the
quantity of generated phrase breaks. Once we learn our MERT
weights, we can keep all weights to their learned value and
vary the weight of the break-count feature to provide this knob.
Our empirical evidence shows that the knob can be reasonably
approximated with a Tangent function with offset. The combina-
tion of using a MERT model and this break-count feature allows
a user to specify how many breaks they want, and our model
produces the breaks appropriately.
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Figure 3: F-measure versus Desired Proportion of Phrase Breaks
on the F2B corpus

We intend to explore the benefits of the proposed framework
in more details. Particularly, we only used four feature functions
in this work and would like to investigate how additional features
could help improve the phrasing accuracy even further.

Our model now can vary the phrasing rate at demand. We
map a particular phrasing proportion into a knob value. However,
users of speech synthesis do not define phrasing rate in terms
of the proportion of word boundaries that are breaks. The con-
trol we would like them to have would be more quantized: low,
medium, high, etc. However, how does a particular category,
such as “low” map into the desired proportion of break bound-
aries? We think this mapping depends on the original proportion
of breaks in our reference break sequences. However, we in-
tend to conduct listening tests to discover what grades of phrase
breaks people can perceive, and how we can map categories of
break levels into numeric proportion values.

The MERT framework that we proposed for phrasing took
inspiration from work in Machine Translation. However, this
connection actually runs deeper. Text to speech is often used as
the final step in speech to speech translation, and we are required
to synthesize automatically translated output. [23] has shown
that the synthesis of machine translation output is often diffi-
cult to understand, and [24] suggests that appropriate phrasing
can make it more understandable. We aim to use the MERT
framework to incorporate internal machine translation scores
of an utterance, that relate to confidence measures of the MT
system, into the phrasing model and improve the intelligibility
of synthesis.
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